Cho a,b,c là ba số thực thỏa mãn a+b+c=0 và ab+bc+ca= -10.
Tính giá trị của biểu thức A=a^4+b^4+c^4.
Áp dụng:Cho ba số a,b,c thỏa mãn a+b+c=2 và ab+bc+ca=-23.Tính giá trí của biểu thức a^2+b^2+c^2
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
Cho các số dương a,b,c thỏa mãn ab+a+b=3; bc+b+c=8; ca+c+a=15. Tính giá trị biểu thức P=a+b+c.
Cho a,b,c là Ba số khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) ( với giả thiết cá tỷ số đều có nghĩa)
Tính giá trị biểu thức M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Tính giá trị biểu thức :
A = [ (a+b)2019 - c2019 ] [ (b+c)2019 - a2019 ] [ (a+c)2019 - b2019 ]
Cho a,b,c là ba số thực dương thỏa mãn điều kiện:\(a+b+c=1\)
Tìm giá trị lớn nhất của biểu thức:\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
Cho các số thực a,b,c thỏa mãn \(a^2+b^2+c^2=1\)
Tính giá trị lớn nhất và nhỏ nhất của biểu thức P=ab+bc+ca
Cho a, b, c thỏa mãn a + b + c = 1. Tính giá trị biểu thức \(H=\frac{ab+b+2c}{b+c}+\frac{bc+c+2a}{c+a}+\frac{ca+a+2b}{a+b}\)