Từ giả thiết a ≤ 1 , b ≤ 1 , c ≤ 1 ta có a 4 ≤ a 2 , b 6 ≤ b 2 , c 8 ≤ c 2 . Từ đó a 4 + b 6 + c 8 ≤ a 2 + b 2 + c 2
Lại có: a − 1 b − 1 c − 1 ≤ 0 v à a + 1 b + 1 c + 1 ≥ 0 nên
a + 1 b + 1 c + 1 − a − 1 b − 1 c − 1 ≥ 0 ⇔ 2 a b + 2 b c + 2 c a + 2 ≥ 0 ⇔ − 2 a b + b c + c a ≤ 2
Hơn nữa a + b + c = 0 ⇔ a 2 + b 2 + c 2 = − a b + b c + c a ≤ 2
⇒ a 4 + b 6 + c 8 ≤ 2