Thay \(b^2=ac\)vào \(\frac{a^2+b^2}{b^2+c^2}\)ta có :
\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a.\left(a+c\right)}{c.\left(a+c\right)}=\frac{a}{c}\)
Suy ra \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
Vậy....
\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
Thế \(b^2=ac\)Ta được:
\(\frac{a^2+ac}{ac+c^2}=\frac{a.\left(a+c\right)}{c.\left(a+c\right)}=\frac{a}{c}\left(đpcm\right)\)