từ giả thiết:
b^2=ac;c^2=bd =>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
lại có:
\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\left(2\right)\)
từ 1 và 2=>đpcm
b;c;d thoả mãn b 2 =ac; c - Giúp tôi giải toán - Hỏi đáp, thảo ... nho lik e vao do dug 10000000000000000000%
cho a/b=b/c=c/d CMR [a^3+b^3+c^3]/[b^3+c^3+d^3]=a/d
làm đc cau ni ko
từ giả thiết:
b^2=ac;c^2=bd =>\frac{a}{b}=\frac{b}{c}=\frac{c}{d}ba=cb=dc
ta có: \frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)b3a3=c3b3=d3c3=b3+c3+d3a3+b3+c3(1)
lại có:
\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\left(2\right)b3a3=ba.ba.ba=ba.cb.dc=b.c.da.b.c=da(2)
từ 1 và 2=>đpcm