Bài 1.Cho biểu thức
A = (\(\dfrac{2-x}{x+3}-\dfrac{3-x}{x+2}+\dfrac{2-x}{x^2+5x+6}\)) : (1-\(\dfrac{x}{x-1}\))
(a) Rút gọn A.
(b) Tìm x để A > 2.
Bài 2.Cho x+y=a,\(x^2+y^2=b\).Tính \(x^3+y^3\)theo a và b
Bài 1: Rút gọn biểu thức
a, (x+y)^2-(x-y)^2
b, 2(x-y)(x+y)+(x+y)^2+(x-y)^2
Bài 2: Tìm X
a) (2X+1)^2-4(x+2)^2=9
b) 3(x-1)^2-3x(x-5)=21
Bài 3: Cho biểu thức
M=(x-3)^3-(x-1)^3+12x(x-1)
a, Rút gọn M
b, Tính giá trị M tại x= -2/3
c, Tìm x để M=-16
Rút gọn biểu thức
a) A= 39(x-y)^2-2(x+y)^2-(x-y)(x+y)
b) B= (x-1)^2-2(x-1)(x-3)+(x-3)^2
c) C= (2x+3)^2+(2x+3)(2x-6)+(x-3)^2
d) D= (x^2+x+1)(x^2-x+1)(x^4-x^2+1)(x^8-x^4+1)
Rút gọn rồi tính giá trị của biểu thức
a)M=(x^2+3xy-3x^3)+(2y^3-xy+3x^3)-y^3 tại x=5 và y=4
b) N= x^2(x+y)-y(x^2-y^2) tại x=-6 y=8
c)P=x^2+1/2x+1/16 biết x= 3/4
Rút gọn các phân thức sau: a) x^3+y^3+z^3-3xyz/(x-y)^2+(x-z)^2+(y-z)^2 b) (x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3/(x-y)^3+(y-z)^3+(z-x)3
Bài 2: Rút gọn biểu thức:
a/ A = (3x–1)2 + (x+3)(2x–1)
b/ B = x(x–y) + y(x–y)
e/ C = (x–2)(x2+2x+ 4) – x(x2 –2)
f/ D = (x+y)2– (x–y)2
rút gọn biểu thức
a)(x+y)^2-(x-y)^2
b)2.(x+y).(x-y)+(x+y)^2+(x-y)^2
c)(x+3).(x^2-3x+9)-(54+x^3)
d)(2x+y).(4x^2-2xy+y^2)-(2x-y)
e)(6x+1)^2+(6x-1)^2-2.(6x+1).(6x-1)
f)(a-b)^3-(a+b)^3+2b^3
Rút gọn biểu thức:
a) 3.(x+y).(x-y)+(x+y)^2+(x-y)^2
b) (2x+y)^2 - (y+3x)^2
1) Rút gọn bt:
(x+y+z)3+(x-y-z)3+(y-x-z)3+(z-y-x)3
2)Tìm x,y,z t/m: 9x2+y2+2z2-18x+4z-6y+20=0
3)Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\)=1 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\)=0 . CMR:
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)=1
Rút gọn biểu thức:
A= (x^2-y)(y+1)+x^2y^2-1/(x^2+y)(y+1)+x^2y^2+1
B= x^2(y-z)+y^2(z-x)+z^2(x-y)/x^2y-x^2z+y^2z-y^3