a) B=\(\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right)\):\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
=\(\left(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}-4}{x-1}\right)\)
=\(\left(\frac{\sqrt{x}-2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
=\(\left(\frac{\sqrt{x}-2}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
=\(\frac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x-4}\)
=\(\frac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
Vay B=\(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b) Co B<0 ⇌ \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)<0
⇌\(\sqrt{x}-1< 0\)(vi \(\sqrt{x}+2>0\) luon dung voi x≥0)
⇌\(\sqrt{x}< 1\) ⇌ x<1 ket hop x≥0 , x≠1, x≠4
⇒ 0≤x<1
Vay 0≤x<1 thi B<0