các pạn ơi mình cần gấp lắm lun
giải hộ mk với
Ta có:
\(B=3+3^2+3^3+...+3^{2020}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2019}+3^{2020}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+...+3^{2019}\cdot4\)
\(B=4\cdot\left(3+3^3+...+3^{2019}\right)\) chia hết cho 4
=> đpcm
cảm ơn bạn rất rất nhiều:))))
\(B=3+3^2+3^3+...+3^{2020}\)
\(3B=3.(3+3^2+3^3+...+3^{2020}\)\()\)
\(3B=3^2+3^3+3^4+...+3^{2021}\)
\(3B-B=\left(3^2+3^3+3^4+...+3^{2021}\right)-\left(3+3^2+3^3+...+3^{2020}\right)\)
\(2B=3^{2021}-3\)
\(B=\frac{3^{2021}-3}{2}\)
Vậy: \(B=\frac{3^{2021}-3}{2}\)
B = 3 + 32 + 33 + ....+32020
B = ( 3 + 32 ) + ( 33 + 34 ) + ..... + ( 32019 + 32020 )
B = 3 . ( 1 + 3 ) + 33 . 4 + .... + 32019 . 4
B = 4 . ( 3 + 33 + .... + 32019 ) chia hết cho 4
=> Đpcm