Cho B = 1.2.3.4.5......2012 .(1+1/2+1/3+...1/2012)
CMR B chia hết cho 2013
cho B=1.2.3.4.....2012.(1+1\2+1\3+...+1\2012.CMR B chia hết cho 2013
Cho B=1.2.3.......2012.(1+1/2+1/3+.....+1/2012).Chứng minh rằng B chia hết cho 2013
tim x biet |2x - 1|<5
cho B= 1.2.3...2012[1+1/2+1/3+...+1/2012]
CMR B chia het cho 2013
1, CMR : 23^401 + 38^202 - 2^433 chia hết cho 5
2, CMR: 9^2014 +3^2013 +2^2012 chia hết cho 10
3, CMR : 3^2013 + 2^2013 chia hết cho 5
Cho B = 1 x 2 x 3 x ... x 2012 x (1+1/2+1/3+...+1/2012
Chứng minh rằng B chia hết cho 2013
1. Cho A= 1.2.3...2012.\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\)
CMR: A chia hết cho 2013
a, CMR: Nếu 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
b, So sánh: A= 2014^2012+1/2014^2013+1 và B= 2014^2011+1/2014^2012+1
B1:So Sánh
a,9^8.5^16 và 19^20
b,71^50 và 37^75
B2:tìm n thuộc N biết
a,3n+2 chia hết cho n-1
b,5n+7chia hết cho 3n+2
B3:CMR
a,A=999993^1999-555557^1997 chia hết cho 5
b,B=2012+2012 ^2+2012^3+.........+2012^2010 chia hết cho 2013