\(a,A=\dfrac{x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{x+6}\\ A=\dfrac{x^2-4}{x+6}\\ b,A>0\Leftrightarrow\dfrac{x^2-4}{x+6}>0\Leftrightarrow\dfrac{\left(x-2\right)\left(x+2\right)}{x+6}>0\\ TH_1:\left\{{}\begin{matrix}\left(x-2\right)\left(x+2\right)>0\\x+6>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\\x>-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\-6< x< -2\end{matrix}\right.\\ TH_2:\left\{{}\begin{matrix}\left(x-2\right)\left(x+2\right)< 0\\x+6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2< x< 2\\x< -6\end{matrix}\right.\Leftrightarrow x< -6\)
Vậy xảy ra các TH: \(\left[{}\begin{matrix}x>2\\-6< x< -2\\x< -6\end{matrix}\right.\)