theo đề bài: \(ax+by+cz=0\)=> \(\left(ax+by+cz\right)^2=0\)
=> \(a^2x^2+b^2y^2+c^2z^2+2\left(axby+bycz+axcz\right)=0\left(1\right)\)
ta lại có tử số =\(bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)
=\(bcy^2+bcz^2+caz^2+acx^2+abx^2+aby^2-2\left(abxy+acxz+bcyz\right)\)(2)
từ (1)(2)=>
Tử số=\(ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)+a^2x^2+b^2y^2+c^2z^2\)
=\(\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)
vậy A=a+b+c
theo đề bài: \(ax+by+cz=0\)=> \(\left(ax+by+cz\right)^2=0\)
=> \(a^2x^2+b^2y^2+c^2z^2+2\left(axby+bycz+axcz\right)=0\left(1\right)\)
ta lại có tử số =\(bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)
=\(bcy^2+bcz^2+caz^2+acx^2+abx^2+aby^2-2\left(abxy+acxz+bcyz\right)\)(2)
từ (1)(2)=>
Tử số=\(ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)+a^2x^2+b^2y^2+c^2z^2\)
=\(\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)
vậy A=a+b+c