ĐẶT: T= \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}=\sqrt[3]{ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=x\sqrt[3]{a}\)
\(\Rightarrow\sqrt[3]{a}=\frac{T}{x}\)
tuowng tự ta đc \(\sqrt[3]{b}=\frac{T}{y};\sqrt[3]{c}=\frac{T}{z}\)
\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\frac{T}{x}+\frac{T}{y}+\frac{T}{z}=T\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=T\left(dpcm\right)\)
Đặt: \(ax^3=by^3=cz^3=k\) và do \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) nên
\(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}}\)
\(=\sqrt[3]{k\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=\sqrt[3]{k}\)
\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{\frac{k}{x^3}}+\sqrt[3]{\frac{k}{y^3}}+\sqrt[3]{\frac{k}{z^3}}\)
\(=\sqrt[3]{k}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\sqrt[3]{k}\)
suy ra:đpcm