\(A=x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
\(=x-2\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)^2+2\left(y-\sqrt{y}+\frac{1}{4}\right)-\frac{3}{2}\)
\(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x}-\sqrt{y}-1=0\\\sqrt{y}-\frac{1}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{1}{4}\end{cases}}\)