Cho a = \(\sqrt{4+\sqrt{10+2\sqrt{5}}}\) + \(\sqrt{4-\sqrt{10+2\sqrt{5}}}\). Tinh
T = \(\frac{a^4-4a^3+a^2+6a+4}{a^2-2a+12}\)
Tính
a,\(\sqrt{6a^2-2a\sqrt{2}+1}\) tại a =\(\sqrt{\frac{2}{3}}\)+ \(\sqrt{\frac{3}{2}}\)
b,\(\sqrt{10a^2-12a\sqrt{10}+36}\)tại a = \(\sqrt{\frac{2}{5}}+\sqrt{\frac{5}{2}}\)
c,\(\sqrt{9a^2-12a+4}-9a+1\) tại a = \(\frac{1}{3}\)
d, \(\sqrt{1-10a+25a^2}-4a\)tại a = -5
\(A=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)\(C=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
Tính :
a, \(B=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
b, \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
c, \(C=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}-\frac{\sqrt{5-2\sqrt{6}}}{3}\)
giúp tui với
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)^2\sqrt{3+\sqrt{5}}\)
\(\dfrac{4-a^2}{48}\sqrt{\dfrac{36}{a^2-4a+4}}\left(a>2\right)\)
tính:
a/\(\frac{6}{4+\sqrt{4-2\sqrt{3}}}\)
b/\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
c/\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{4}+\sqrt{3}}+....+\frac{1}{\sqrt{100}-\sqrt{99}}\)
d/\(\frac{1}{\sqrt{7-2\sqrt{10}}}+\frac{1}{\sqrt{7+2\sqrt{10}}}\)
Trục căn thức ở mẫu và rút gọn:
a) \(\frac{20}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
b) \(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2.\sqrt{3+2\sqrt{5}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
* Thực hiện phép tính
a, A= \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
b, B= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
c, C= \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
Thực hiện phép tính :
A = \(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)