Thay số cuối bằng 64, rút gọn ra 4 nên A<4
Hiển nhiên A> căn bậc 3 của 27=3
Do đó 3<A<4 nên phần nguyên của A là 3
Thay số cuối bằng 64, rút gọn ra 4 nên A<4
Hiển nhiên A> căn bậc 3 của 27=3
Do đó 3<A<4 nên phần nguyên của A là 3
Cho A = \(\sqrt[3]{60+\sqrt[3]{60+\sqrt[3]{60+...+\sqrt[3]{60}}}}\)
Chứng minh rằng 3 < A < 4. Tìm [A]
Cho \(A=\sqrt[3]{60+\sqrt[3]{60+\sqrt[3]{60+...+\sqrt[3]{60}}}}\)
Chứng minh rằng 3<A<4. tìm [A]
cho A\(A=\sqrt[3]{60+\sqrt[3]{60+\sqrt[3]{60+...+\sqrt[3]{60}}}}\)
chứng minh rằng 3<A<4 TÍNH [A]
A=\(\sqrt[3]{60+\sqrt[3]{60+\sqrt[3]{60+...+\sqrt[3]{60}}}}\)
Chứng ming rằng 3<A<4
Thực hiện phép tính
a) (\(2\sqrt{3}-\sqrt{2}\))2+\(2\sqrt{24}\)
b) \(\left(3\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+2\sqrt{3}\right)-\sqrt{60}\)
Chứng minh các hằng đẳng thức sau:
a) \(y\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
b) \(\sqrt{6+\sqrt{24+\sqrt{12}+\sqrt{8}}}-\sqrt{3}=\sqrt{2}+1\)
Chứng minh các hằng đẳng thức:
a) \(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
b) \(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}=\sqrt{2}+1\)
\(\left(2\sqrt{3}+\sqrt{5}\right).\sqrt{3}-\sqrt{60}\)
Biểu diễn A = \(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\) dưới dạng tổng của 3 căn thức