cho x,y là số hữu tỷ dương sao cho x3+y3=2x2y2
chứng minh rằng:giá trị biểu thức \(\sqrt{1-\frac{1}{xy}}\).là số hữu tỷ
CMR A = \(\sqrt{1+\frac{1}{xy}}\)thuộc số hữu tỉ biết x; y đều là số hữu tỉ và \(^{x^3+y^3=2x^2y^2}\)
Chứng minh Căn (1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x^3+y^3=2x^2*y^2
Cho x , y , z là các số hũu tỷ, thõa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) Chứng minh \(\sqrt{x^2+y^2+z^2}\)là số hữu tỷ.
cho x,y thuộc Q,x khác 0, y khác 0 thỏa mãn \(x^3+y^3=2x^2y^2\).Chứng minh rằng A=\(\sqrt{1-\frac{1}{xy}}\)là một số hữu tỉ
giải giúp mình với
Chứng minh v(1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x3+y3=2x2y2
Chứng minh v(1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x3+y3=2x2y2
Chứng minh v(1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x3+y3=2x2y2
Chứng minh v(1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x3+y3=2x2y2