Với n=0 thì \(A=1\) không là số nguyên tố
Với n=1 thì \(A=3\) là số nguyên tố
Với \(n\ge2\) ta có:
\(A=n^{2018}+n^{2017}+1\)
\(=\left(n^{2018}-n^2\right)+\left(n^{2017}-n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2016}-1\right)+n\left(n^{2016}-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^{672}-1\right]+n\left[\left(n^3\right)^{672}-1\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\cdot A+n\left(n^3-1\right)\cdot B+n^2+n+1\)
\(=\left(n^2+n+1\right)\cdot A'+\left(n^2+n+1\right)\cdot B'+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A'+B'+1\right)\) là hợp số với \(\forall n\ge2\)