cho A=1/1*(2N-1)+1/3*(2n-3)+...+1/(2n-1)*1
B=1+1/3+1/4=...+1/n
tính A:B
Tìm số nguyên n sao cho
a) (2n^3 + n^2 + 7n + 1) chia hết cho 2n-1
b)(n^3 - 2) chia hết cho n-2
c)(n^3 - 3n^2 - 3n -1) chia hết cho n^2 + n + 1
d)((n^4 - 2n^3 = 2n^2 - 2n + 1) chia hết cho n^4 - 1
e)(n^3 - n^2 + 2n + 7) chia hết cho n^2 + 1
1. CMR: ∀ n∈\(N^{\cdot}\)
a) \(A=5^n+2.3^{n-1}+1\text{⋮}8\)
b) \(B=3^{n+2}+4^{2n+1}\text{⋮}13\)
c) \(C=6^{2n}+3^{n+2}+3^n\text{⋮}11\)
d) \(D=1^n+2^n+5^n+8^n\text{⋮}8\)
2. \(CMR:\) \(1^{2002}+2^{2002}+...+2002^{2002}\text{⋮}11\)
3. a) cho a,b ∈Z, t/m:\(a^2+b^2\text{⋮}7\). \(CMR:a\text{⋮}7;b\text{⋮}7\)
b) \(CMR:\) Nếu \(a^2+b^2\text{⋮}21\) thì \(a^2+b^2\text{⋮}441\) (a,b ∈Z)
Tính các tổng:
a) A=1/(1*2)+1/(2*3)+...+1/[n*(n+1)]
b) B=1/(1*2*3)+1/(2*3*4)+...+1/[n(n+1)(n+2)]
Bài 1: Cho a+b=5. Tính
D= a^3+b^3+3ab(a^2+b^2)+6a^2b^2
Bài 2: Cho n€Z. CMR:
C=(n+1) (n+2) (n+3) (n+4) +1
E= n^2 +(n+1)^2 +n^2(n+1)^2
Là số chính phương
Tìm stn n sao cho :
a, (a^4-2n^3+2n^2-2n+1) chi hết cho (n^4-1)
b, (n^3-n^2+2n+7) chia hết cho (n^2+1)
cho M=1/(1*2*3)+1/(2*3*4)+...+1/[n(n+1)(n+2)]
va N=[n(n+3)/[4(n+1)(n+2)]
tinh M-N
Tìm số nguyên n sao cho:
a, n2 + 2n - 4 chia hết cho 11
b, 2n3 + n2 + 7n +1 chia hết cho 2n - 1
c, n3 - 2 chia hết cho n - 2
d, n3 - 3n2 - 3n - 1 chia hết cho n2 + n + 1
e, n4 - 2n3 + 2n2 - 2n + 1 chia hết cho n4 - 1
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z