Cho góc nhọn \(\alpha\)thỏa mãn \(\tan\alpha=\frac{2}{\sqrt{3}}\). Tính: \(B=\frac{\cos^4\alpha+\sin^2\alpha\left(\cos^2\alpha+1\right)}{2\cos^4\alpha+2\sin^2\cos^2-\frac{3}{5}\sin^2\alpha}\)
Cho góc nhọn \(\alpha\) thỏa mãn \(\cos\alpha=\frac{1}{3}\). Tính giá trị biểu thức
\(B=\frac{\sin\alpha-3\cos\alpha}{\sin\alpha+2\cos\alpha}\)
1.Cho các góc\(\alpha,\beta\)nhọn và \(\alpha< \beta\). Chứng minh \(\sin\left(\beta-\alpha\right)=\sin\beta\cos\alpha-\cos\beta\sin\alpha\)
2.Cho các góc \(\alpha,\beta\)nhọn và \(\alpha< \beta\).Chứng minh \(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)
3.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)
4.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
Cho góc \(\alpha\)nhọn thỏa mãn \(\tan\alpha=\frac{1}{3}\)
Giá trị của biểu thức A = \(\frac{\sin^2\alpha+\cos^2\alpha}{1+2\sin\alpha\cos\alpha}\) là:
E=\(\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\). CMR hệ thức này ko phụ thuộc vào góc nhọn a
Cho góc nhọn \(\alpha\). Tính giá trị biểu thức:
a) \(A=\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
b) \(B=\sin^4\alpha\left(1+2\cos^2\alpha\right)+\cos^4\alpha\left(1+2\sin^2\alpha\right)\)
c) \(C=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
d)\( D=\left(3\sin\alpha+4\cos\alpha\right)^2+\left(4\sin\alpha-3\cos\alpha\right)^2\)
Chứng minh các biểu thức sau không phụ thuộc vào các góc nhọn \(\alpha\)
a) \(C=\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\)
b) \(D=\sin^2\alpha.\sin^2\beta+\sin^2\alpha.\cos^2\beta+\cos^2\alpha\)
c) E=\(\sin^6\alpha+\sin^6\beta+3.\sin^2\alpha.\cos^2\alpha\)
d) \(M=\frac{\left(\cos\alpha-\sin\alpha\right)^2-\left(\cos\alpha+\sin\alpha\right)^2}{\cos\alpha.\sin\alpha}\)
Chứng minh giá trị các biểu thức sau luôn là hằng số với mọi góc nhọn \(\alpha\)
\(a.\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha\cdot\cos^2\alpha\)
\(b.\cos^2\alpha+\sin^2\alpha+\tan^2\alpha\cdot\cos^2\alpha+\cot^2\alpha\cdot\sin^2\alpha\)
Cho \(\alpha\) là một góc nhọn. Với \(n\in N\)* , \(n\ge2\).
CMR: \(\left(\cos\frac{\alpha}{2}+\sin\frac{\alpha}{2}\right)\left(\cos^n\alpha+\sin^n\alpha\right)\le\sqrt{1+\sin\alpha}\)