\(A=\frac{n-1}{n+4}\)
a) Để A là phân số thì \(n+4\ne0\)\(\Leftrightarrow n\ne-4\)
b) Ta có : \(A=\frac{n-1}{n+4}=\frac{\left(n+4\right)-5}{n+4}=1-\frac{5}{n+4}\)
Để \(A\in Z\Leftrightarrow\frac{5}{n+4}\in Z\)
\(\Leftrightarrow5⋮n+4\Leftrightarrow n+4\inƯ_{\left(5\right)}=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau :
n+4 | 1 | -1 | 5 | -5 |
n | -3 | -5 | 1 | -9 |
Vậy \(n\in\left\{-3;-5;1;-9\right\}\)