SO SÁNH \(A=\frac{7^{2013}+1}{7^{2014}+1}\)VÀ \(B=\frac{7^{2014}+1}{7^{2015}+1}\)
SO SÁNH: A=\(\frac{7^{2013}+1}{7^{2014}+1}\) B=\(\frac{7^{2014}+1}{7^{2015}+1}\)
HELP ME
So sánh A và B , biết rằng :
A = \(-\frac{1}{2010.2011}-\frac{1}{2012.2013}\)và B = \(\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)
So sánh:
a) A=9^10 và B= ( 8^9+7^9+6^9+...+2^9+1^9)
b) P= 2013/2014 + 2014/2015 + 2015/2016 với Q= 2013+2014+2015 / 2014+2015+2016
so sánh giá trị A và B với
\(A=\frac{2013^{2014}+1}{2013^{2015}+1};\)\(B=\frac{2013^{2012}+1}{2013^{2013}+1}\)
Bài 1: Tính nhanh
\(\left(1-\frac{1}{7}\right)\times\left(1-\frac{1}{8}\right)\times\left(1-\frac{1}{9}\right)\times...\times\left(1-\frac{1}{2011}\right)\)
Bài 2:
So sánh\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\)với 3
So sánh A=\(\frac{10^{2011}+1}{10^{2012}+1}\)và B=\(\frac{10^{2012}+1}{10^{2013}+1}\)
Cho A = 1+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{4026}\) ; B = \(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{4025}\) . So sánh \(\frac{A}{B}với1\frac{2013}{2014}\)
Cho A = 1+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{4026}\) ; B = \(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{4025}\) . So sánh \(\frac{A}{B}với1\frac{2013}{2014}\)