Chứng minh rằng : \(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Chứng minh \(\frac{1}{7^2}-\frac{1}{74}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}<\frac{1}{50}\)
Chứng minh:
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{4n-2}+\frac{1}{4n}+...+\frac{1}{98}+\frac{1}{100}<\frac{1}{50}\)
CMR : \(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^n}+...+\frac{1}{7^{98}}+\frac{1}{7^{100}}< \frac{1}{50}\)
Giải hộ mình nhé
Chứng minh rằng :
\(\frac{1}{7^2}\)- \(\frac{1}{7^4}\)+........+ \(\frac{1}{7^{4n-2}}\)- \(\frac{1}{7^{4n}}\) +.......+\(\frac{1}{7^{98}}\)- \(\frac{1}{7^{100}}\)< \(\frac{1}{50}\)
chứng minh rằng \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}<\frac{1}{50}\)
ai nhanh minh k cho
\(A=(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}})\div(1-\frac{1}{7^{100}})\)Mình đag cần rất gấp . Mong mn giúp mình với
Ai làm nhanh mình tick
Bài 1:Cho A=7+73+75+...+72015.Chứng minh A chia hết cho 35
Bài 2:Tìm các số tự nhiên a,b sao cho:
a)\(\frac{5}{a}-\frac{2}{b}=\frac{1}{4}\)
b)\(a-b=5và\frac{\left(a,b\right)}{\left[a,b\right]}\frac{1}{6}\)
Bài 3:Tìm số tự nhiên n để phân số\(A=\frac{5n-11}{4n-13}\)có giá trị lớn nhất và nhỏ nhất là bao nhiêu
Bài 4:Thực hiện tính:
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2016}\left(1+2+...+2016\right)\)
chứng minh rằng : \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)