Cho B =\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+......+\frac{1}{2006^2}\) Chứng minh : B < \(\frac{334}{2007}\)
Cho B = \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2006^2}\)
Chứng minh rằng B <\(\frac{334}{2007}\)
cho B=\(\frac{1}{4^2}\)+ \(\frac{1}{6^2}\)+ \(\frac{1}{8^2}\)+....+\(\frac{1}{2006^2}\). CM: B<\(\frac{334}{2007}\)
Cho C= \(\frac{8}{9}\)+ \(\frac{24}{25}\)+ \(\frac{48}{49}\)+....+ \(\frac{200.202}{201^2}\). CM: C>99,75
Tính một cách hợp lí giá trị của các biểu thức sau:
A=3+6+9+12+...+2007
B=2.53.12+4.6.87-3.8.40
C=(\(\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2006}{2}+\frac{2006}{3}+...+\frac{1}{2006}}\)
a, Tính nhanh :
\(\frac{2009\times(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008})}{2008-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{2006}{2007}+\frac{2007}{2008}\right)}\)
b, Cho \(\text{Q}=2+2^2+2^3+...+2^{10}\). Chứng tỏ rằng \(Q⋮3\).
\(\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...........+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+.............+\frac{1}{2006}}\)
Tính :
\(\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2006}{2}+\frac{2006}{3}+...+\frac{1}{2006}}\)
Cho : \(M=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}\)
\(N=\frac{2007}{1}+\frac{2006}{2}+\frac{2005}{3}+.....+\frac{2}{2006}+\frac{1}{2007}\)
Tính \(\frac{M}{N}\)