cho A =\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Chứng minh \(\frac{7}{12}< A< \frac{5}{6}\)
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....\frac{1}{99.100}.\)Chứng minh rằng:
a.\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}.\)
b.\(\frac{7}{12}< A< \frac{5}{6}.\)
chứng minh rằng:
\(\frac{7}{12}\)<A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}
Chứng minh:
\(\frac{7}{12}< \frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}< \frac{5}{6}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}.\)
CM. \(\frac{5}{6}< A< \frac{7}{12}\)
cho A = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.......+\frac{1}{99.100}\)
CMR: \(̃̃̃̃\frac{7}{12}< A< \frac{5}{6}\)
\(ChoA=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}CMR\frac{7}{12}
Cho S = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)Chứng minh S<\(\frac{5}{6}\)
chứng minh:\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 1\)