Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+............+\frac{1}{2005.2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+.....+\frac{1}{2006.1004}\)
Tính \(\frac{A}{B}\)
Cho:
\(A=\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{2003.2004}+\frac{1}{2005.2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+.....+\frac{1}{2006.1004}\)
Hãy tính \(\frac{A}{B}\)
1, Cho
A = \(\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{2005.2006}\)
B = \(\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+.......+\frac{1}{2006.1004}\)
Hãy Tính \(\frac{A}{B}\)
Cho
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2003.2004}+\frac{1}{2005.2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+...+\frac{1}{2006.1004}\)
Tìm \(\frac{A}{B}\)
Chắc chắn 100% đề bài đúng!!
Bài 1 : Tính hợp lý :
a) A = 182 . \(\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}}:\frac{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right)\) : \(\frac{919191}{808080}\)
b) C = \(-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{3}}}}\)
c) D = \(\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\right)\): \(\left(\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\right)\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2003.2004}+\frac{1}{2005.2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+...+\frac{1}{2006.1004}\)
Tính \(\frac{A}{B}\)
.
.
.
,
- Đề bài toàn toàn không sai
- Tiêu chí like: + Đúng
+ Nhanh
+ Dễ hiểu
1;Tính:
A=22+42+62+82+...+1002.
B=13+23+33+43+...+1003.
2;Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)
B=\(\frac{1}{1004.2006}+\frac{1}{1005.2006}+...+\frac{1}{2006.2006}\)
Tính A : B
Tìm x biết
x. (1/1.2 + 1/3.4+ 1/5.6+ ....+ 1/2005.2006) = 1/1004.2006+1/1005.2005+1/1006.2004+ .....+ 1/2006.1004
a) Chứng tỏ rằng \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
b) Đặt A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2013+2014}\); Đặt B = \(\frac{1}{1008.2014}+\frac{1}{1009.2013}+...+\frac{1}{2014.1008}\)
Chứng tỏ rằng \(\frac{A}{B}\)là số nguyên