\(ac=b^2,ab=c^2\Rightarrow ac.ab=b^2.c^2\Rightarrow a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\left(a,b\ne0\right)\)
Mà \(ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\) \(\left(b,c\ne0\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\) (vì \(a+b+c\ne0\) )
\(\Rightarrow a=b=c\)
Ta có: \(\frac{b^{3333}}{a^{1111}.c^{2222}}=\frac{b^{3333}}{b^{1111}.b^{2222}}=\frac{b^{3333}}{b^{3333}}=1\) (vì a = b = c và b khác 0)
Chúc bạn học tốt.