\(2bd=\left(2b\right)d=\left(b+d\right)c=bc+cd\)
\(\Rightarrow\left(a+c\right)d=bc+cd\)
\(\Rightarrow ad+cd=bc+cd\)
\(\Rightarrow ab=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Ta có :
a + c = 2b (1)
2bd = c.(b+d) (2)
Thế (1) vào (2) , ta được;
(a+c).d = c.(b+d)
Thao tính chất phân phối, ta có:
ad + cd = cb + cd.
\(\Rightarrow ad=cb\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(2bd=\left(b+d\right).c=>\left(a+c\right).d=\left(b+d\right).c=>ad+cd=bc+cd\)
\(=>ad=bc=>\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)