Cho a+c = 2b và 2ab = c.(b+d) ( với b,d ≠ 0)
Chứng minh \(\frac{a}{b}\)= \(\frac{c}{d}\)
cho a+c=2b và 2bd=c(b+d) với b khác 0, d khác 0. chứng minh \(\frac{a}{b}=\frac{c}{d}\)
cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) và a+b+c+d \(\ne\)0
chứng minh rằng a=b=c=d
Chứng minh rằng nếu a + c = 2b và 2bd = c(b + d ) thì \(\frac{a}{b}=\frac{c}{d}\)với b,d khác 0.
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)với a \(\ne\)0, b \(\ne\)0, c \(\ne\)0, d \(\ne\)0, a khác cộng trừ b, c khác cộng trừ d.
Chứng minh: \(\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
Cho a + c = 2b và 2bd = c(b+d) ; b,d \(\ne\)0 CMR :\(\frac{a}{b}=\frac{c}{d}\)
Cho a + c =2b và 2bd=c(b + d) (với b,d khác 0)
Chứng minh \(\frac{a}{b}\)= \(\frac{c}{d}\)
Chứng minh nếu a+c=2b và 2bd=c(b+d) thì \(\frac{a}{b}\)=\(\frac{c}{d}\)với b,d khác 0
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a,b,c,d>0,a\ne b.c\ne d\right)\). Chứng minh rằng \(\frac{a}{a-b}=\frac{c}{c-d}\)