Bình phương 2 vế ta được
3a2 + 18 - 2a2 - 4ab - 2b2 \(\ge\)0
<=> a2 - 2b2 - 4ab + 3( a2 + b2) \(\ge0\)
<=> 4a2 - 4ab + b2 \(\ge0\)
<=> (2a - b)2 \(\ge0\)(đúng)
Bình phương 2 vế ta được
3a2 + 18 - 2a2 - 4ab - 2b2 \(\ge\)0
<=> a2 - 2b2 - 4ab + 3( a2 + b2) \(\ge0\)
<=> 4a2 - 4ab + b2 \(\ge0\)
<=> (2a - b)2 \(\ge0\)(đúng)
cho các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}=1\)
Chứng minh rằng \(3\left(a+b\right)^2-\left(a+b\right)+4ab\ge\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\)
Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng:
\(18\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(9+5\sqrt{3}\right)\left(a^2+b^2+c^2\right)\)
Cho a,b,c là các số dương thỏa mãn điều kiện \(a+b+c+2\sqrt{abc}=2\). Chứng minh rằng:
\(\sqrt{a\left(2-b\right)\left(2-c\right)}+\sqrt{b\left(2-c\right)\left(2-a\right)}+\sqrt{c\left(2-a\right)\left(2-b\right)}=\sqrt{8}+\sqrt{abc}\)
cho \(a^2+b^2=6\) ( a, b dương)
chứng minh : \(\sqrt{3\left(a^2+6\right)}\ge\sqrt{2}\left(a+b\right)\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=5 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3.\)
Chứng minh rằng:\(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}.\)
Cho a,b,c là các số thực dương thỏa mãn \(a^2b^2+b^2c^2+c^2a^2\ge a^2b^2c^2\). Chứng minh rằng:
\(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\ge\frac{\sqrt{3}}{3}\).
cho a;b;c là các số thực dương thỏa mãn \(a^2+b^2+c^2=\frac{1}{3}\)CMR:\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}\ge a+b+c\)
Cho a, b, c là các số thực dương thỏa mãn a+b+c=5 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). Chứng minh rằng
\(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng :
\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(a-c\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le2\)