Cho các số hữu tỉ a, b, c và d thỏa mãn điều kiện:
\(\hept{\begin{cases}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{cases}}\)
Tính giá trị của biểu thức M = \(a^3-a+3b^4-3b+5c^5-5c+7d^6-7d\)
Cho các số hữu tỉ a,b,c,d thỏa mãn\(\hept{\begin{cases}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{cases}}\)
Tính giá trị của biểu thức:M=a3-a+3b4-3b+5c5-5c+7c6-7c
Tìm a, b, c thỏa mãn:
\(\hept{\begin{cases}a^4-2b=\frac{-1}{2}\\b^4-2c=\frac{-1}{2}\\c^4-2a=\frac{-1}{2}\end{cases}}\)
Tính giá trị của biểu thức: \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\) biết \(\hept{\begin{cases}10a^2-3b^2+ab=0\\b>a>0\end{cases}}\)
Cho a và b thỏa mãn \(\hept{\begin{cases}a^3+2b^2-4b+3=0\\a^2+a^2b^2=2b\end{cases}}\)
Tính \(a^{2018}+b^{2019}\)(Đây chỉ là toán lớp 8)
Tính \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\) biết \(\hept{\begin{cases}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{cases}}\)
Cho \(\hept{\begin{cases}a+b+c=1\\a^2+b^2+c^2=1\\a^3+b^3+c^3=1\end{cases}}\). Tính giá trị của biểu thức: \(P=a^2b+b^2c+c^2a\)
có bao nhiêu bộ ba số nguyên a,b,c thỏa mãn hệ
\(\hept{\begin{cases}ab+bc+ca=0\\\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{4}=0\end{cases}}\)
Cho các số \(a;b\)thỏa măn \(\hept{\begin{cases}0< a< 1\\0< b< 1\\\frac{x}{1-x}+\frac{y}{1-y}=1\end{cases}}\)
Tính\(S=\sqrt{a+b+\sqrt{a^2-ab+b^2}}\)