Ta có: a+4b \(⋮\)13 => 10(a+4b)\(⋮\)13
<=> 10a+40b\(⋮\)13 <=> (10a+b)+39b\(⋮\)13
Nhận thấy: 39b\(⋮\)13 với mọi b thuộc N
=> 10+b \(⋮\)13
Ta có : \(a+4b⋮13\)=> \(23\left(a+4b\right)⋮13\)
=> \(23a+92b⋮13\)=> \(\left(13a+91b\right)+\left(10a+b\right)⋮13\)
=> \(10a+b⋮13\)\(\left(do13a+91b⋮13\right)\)( đpcm )