$\frac{2+a}{1+a}=1+\frac{1}{1+a}$
\(\frac{1-2b}{1+2b}=-1+\frac{2}{1+2b}\)$\frac{1-2b}{1+2b}=-1+\frac{2}{1+2b}$
$\frac{1}{1+a}+\frac{2}{2+2b}=\frac{2}{2+2a}+\frac{2}{2+2b}\ge \frac{8}{4+2\left(a+b\right)}=\frac{8}{7}$
$\frac{1}{1+a}+\frac{2}{2+2b}=\frac{2}{2+2a}+\frac{2}{2+2b}\ge \frac{8}{4+2\left(a+b\right)}=\frac{8}{7}$
\(\frac{2+a}{1+a}+\frac{1-2b}{1+2b}=1+\frac{2}{2+2a}-1+\frac{2}{2+2b}\ge\frac{8}{2+2a+2+2b}=\frac{8}{7}\)
\(VT=\frac{2}{2+2a}+\frac{2}{1+2b}\ge2.\frac{4}{2+2a+1+2b}\ge\frac{8}{7}\) (đpcm)