Theo BĐT Bunhia ta có (a^2+b^2+c^2) (x^2+y^2+z^2) >_ (ax + by + cz)^2 a/x = b/y + c/z
suy ra a/x=b/y=c/z
Theo BĐT Bunhia ta có (a^2+b^2+c^2) (x^2+y^2+z^2) >_ (ax + by + cz)^2 a/x = b/y + c/z
suy ra a/x=b/y=c/z
Cho a,b,c,x,y,z là các số dương thỏa mãn (a^2+b^2+c^2) (x^2+y^2+z^2) = (ax + by + cz)^2
CMR a/x = b/y + c/z
Cho a,b,c,d là các số thực bất kỳ thỏa mãn \(\left(a^2+b^2+c^2\right)\cdot\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
CMR:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a,b,c\ne0\right)\)
cho a,b,c và x,y,z thỏa ax+by+cz=0. rút gọn A=bc(y-z)^2+ca(z-x)^2+ab(x-y)^2/a^2x^2+b^2y^2+c^2+z^2
1) CMR (a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz)^2+(bz-cy)^2+(cx-az)^2+(ay-bx)^2 với moin a,b, c, x, y, z
2) cho 3 số a, b, c thỏa mãn a+b+c=2010 Tìm giá trị nhỏ nhất của P=a^2+b^2+c^2
Cho các số a, b, b, x, y, z thỏa mãn: \(a+b+c=0\) , \(x+y+z=0\) , \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
Chứng minh rằng: \(ax^2+by^2+cz^2=0\)
1.cho x,y thỏa mãn: ax+by=c,bx+cy=a,cx+by=b
CMR:a^3+b^3+c^3=3abc.
2.cho a,b,c khác 0 sao cho:ay-bx/c=cx-az/b=bz-cy/a
CMR:(ax+by+cz)=(x^2+y^2+z^2)(a^2+b^2+c^2)
Cho a,b,c,d và x,y,z,t là các số dương thõa mãn:ax=by=cz=dtax=by=cz=dt
CM: √ax+√by+√cz+√dt=√(a+b+c+d)(x+y+z+t)
Ax + By = Cz . Với điều kiện A, B, C, x, y, z đều là các số nguyên dương, trong đó x, y, z lớn hơn 2. Còn A, B, C có cùng bội số chung nhỏ nhất.
Cho x;y;z là các số thực bất kì và a;b;c là các số dương thỏa mãn \(ax+by+cz=0\)
Chứng minh rằng
\(xy+yz+zx\le0\Leftrightarrow a^2+b^2+c^2\le2\left(ab+bc+ca\right)\)