Dễ dàng chứng minh bất đẳng thức phụ : 1a+1b≥4a+b∀a;b>01a+1b≥4a+b∀a;b>0
Và p−a;p−b;p−c>0p−a;p−b;p−c>0 theo bất đẳng thức trong tam giác.
Áp dụng bất đẳng thức phụ vừa chứng minh, ta có:
1p−a+1p−b≥42p−a−b=4c1p−a+1p−b≥42p−a−b=4c (1)(1)
1p−b+1p−c≥42p−b−c=4a1p−b+1p−c≥42p−b−c=4a (2)(2)
1p−c+1p−a≥42p−c−a=4b1p−c+1p−a≥42p−c−a=4b (3)(3)
Cộng 1;2;31;2;3 vế theo vế, ta được:
2(1p−a+1p−c+1p−c)≥4(1a+1b+1c)2(1p−a+1p−c+1p−c)≥4(1a+1b+1c)
. Áp dụng BĐT Schwarz cho 3 số trên là ra thoy =))