Cho các số a,b,c,m,n,p nguyên dương thỏa mãn : \(a^2+b^2+c^2\text{=}m^2+n^2+p^2\)
Chứng minh rằng : a + b + c + m + n + p là hợp số.
cho a,b,c,m,n,p là các số nguyên dương thỏa mãn a2+b2+c2=m2+n2+p2
CMR tổng a+b+c+m+n+p là hợp số
cho 6 số nguyên dương a < b < c < d < m < n . CMR : a+c+m/a+b+c+d+m+n < 1/2
Cho a, b, c, d, m, n thuộc Z và a < b < c < d < m
CMR: (a+c+m)/(a+b+c+d+m+n) < 1/2
Cho a,b là 2 số tự nhiên. Số a chia 5 dư 1. Số b chia 5 dư 2 . C/M a nhân b chia 5 dư 2
cho a,b,c,d tỉ lệ với các số m,m+n,m+2n. CMR nếu khác 0 thì ta có 4(a-b)(b-c)=(c-a)^2
Cho a < b < c < d < m < n với a,b,c,d,m,n là các số nguyên dương.
CMR \(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
Cho 6 số nguyên dương a<b<c<d<m<n
CMR:\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
cho a^2+b^2+c^2=m^2+n^2+p^2 cm a+b+c+m+n+p là hợp số