\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
...... bạn làm 2 TH rồi thế vào P nhé, chỗ phân tích ko hiểu thì cứ hỏi lại mình
\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
...... bạn làm 2 TH rồi thế vào P nhé, chỗ phân tích ko hiểu thì cứ hỏi lại mình
Cho a, b, c đôi một khác nhau thỏa mãn: \(a^3+b^3+c^3=3abc\) và \(abc\ne0\)
Tính \(P=\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}\)
cho a, b ,c thuộc R và a+b+c =0 thỏa mãn a3 +b3 + c3 = 3abc , abc khác 0.
Tinh P = \(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\)
Cho a,b,c là các số thực dương thõa : a+b+c=3
CMR: \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\ge6\)
CÁC BẠN ZẢI NHANH ZÚP
(Chuyên Toán HN 2016) Cho các số thực a, b, c đôi một khác nhau thỏa mãn a^3 + b^3 + c^3 = 3abc và abc khác 0. Tính giá trị của biểu thức: P = a.b^2/(a^2 + b^2 - c^2) + b.c^2/(b^2 + c^2 - a^2) + c.a^2/(c^2 + a^2 - b^2)
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
Cho a,b, c khác 0 , thỏa mãn : \(\frac{a.b}{a+b}=\frac{b.c}{b+c}=\frac{a.c}{a+c}\)
Tính \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)
17 Cho a,b khác 0 thỏa mãn a+b=1.CM:
\(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\left(ab-2\right)}{a^2b^2+3}\)
18 Cho\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
Tính giá trị biểu thức A=\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{z^2}\)
19Cho a,b,c đôi một khác nhau và \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
Tính giá trị P=\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-c\right)^2}\)
1, Cho a,b,c khác nhau đôi một.CMR
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\ge2\)
2,Cho 3 số thực dương thỏa mãn: \(a+b+c\le3\).CMR
\(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ac}\ge670\)
Cho a,b,c là các số thực không âm thỏa mãn abc = 1. Chứng minh rằng :
\(\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\ge2\)