P = ab-a^2-ba+bc-bc = -a^2
Vì a thuộc N , a khác 0 nên a > 0 => a^2 > 0 => P = -a^2 < 0
=> ĐPCM
k mk nha
Vì a,b,c\(\in N\)nên áp dụng tính chất phân phối của phép nhân đối với phép cộng và phép trừ,ta có:
\(a\left(b-a\right)=a.b-a.a=ab-a^2;b\left(a-c\right)=ba-bc=ab-bc\)
Do đó: \(P=\left(ab-a^2\right)-\left(ab-bc\right)-bc\)
\(=ab-a^2-ab+bc-bc\) (quy tắc bỏ dấu ngoặc)
\(=\left(ab-ab\right)+\left(bc-bc\right)-a^2\)
\(=0+0-a^2\)
\(=-a^2\)
Vì a\(\ne\)0 nên\(a^2\)>0,do đó số đối của \(a^2\)nhỏ hơn 0, hay \(-a^2\)<0
Vậy\(P< 0\),tức là \(P\) luôn có giá trị nguyên âm.
nguoibian bn tên nguyên phải ko , nga nói đấy