CMR
\(\sqrt{a^2+\frac{1}{b}}+\sqrt{b^2+\frac{1}{c}}+\sqrt{c^2+\frac{1}{a}}\ge\frac{\sqrt{97}}{2}\)
CMR ĐK a+b+b\(\ge\)2
\(\sqrt{a^2+\frac{1}{b}}+\sqrt{b^2+\frac{1}{c}}+\sqrt{c^2+\frac{1}{a}}\ge\frac{\sqrt{97}}{2}\)
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}\sqrt{c^2+a^2}=\sqrt{2011}cmr\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{2}\sqrt{\frac{2011}{2}}\)
Cho a,b,c duong thoa :\(a+b+c\le2\)
Chung minh: \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\frac{\sqrt{97}}{2}\)
Cho a b c dương thỏa mãn a+b+c=3 CMR
\(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\ge\frac{3\sqrt{2}}{2}\)
với a,b,c dương thỏa
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2015}\\CMR:\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{2}\sqrt{\frac{2015}{2}}\)
Cho 3 số dương a;b;c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=1\)
CMR: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2\sqrt{2}}\)
Cho a,b,c>0 t/m: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\)
CMR:\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\sqrt{\frac{2011}{2}}\)