Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Hải Đăng

Cho a,b,c\(\ge1\)CMR \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{1}{1+\sqrt[4]{ab^3}}+\frac{1}{1+\sqrt[4]{bc^3}}+\frac{1}{1+\sqrt[4]{ca^3}}\)

Tran Le Khanh Linh
30 tháng 4 2020 lúc 7:03

Ta có \(a+b+b+b\ge4\sqrt[4]{abbb}\)(theo BĐT Cosi)

\(\Leftrightarrow a+3b\ge\sqrt[4]{ab^3}\)

\(\Leftrightarrow\frac{a+3b}{4}\ge4\sqrt[4]{ab^3}\)

Mà \(a,b,c\ge1\Rightarrow a+3b\ge4\Rightarrow\frac{a+3b}{4}\ge1\)

\(\Leftrightarrow1+\sqrt[4]{ab^3}\ge1+a\)

\(\Rightarrow\frac{1}{1+\sqrt[4]{ab^3}}\le\frac{1}{1+a}\left(1\right)\)

Tương tự \(\hept{\begin{cases}\frac{1}{1+\sqrt[4]{bc^3}}=\frac{1}{1+b}\left(2\right)\\\frac{1}{1+\sqrt[4]{ca^3}}=\frac{1}{1+c}\left(3\right)\end{cases}}\)

(1) (2) (3) => \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{1}{1+\sqrt[4]{ab^3+1}}+\frac{1}{1+\sqrt[4]{bc^3}}+\frac{1}{1+\sqrt[4]{ca^3}}\)(đpcm)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Kudo Shinichi
Xem chi tiết
Nguyễn Công Minh Hoàng
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Nguyễn Hưng Phát
Xem chi tiết
Vân Anh
Xem chi tiết
NONAME
Xem chi tiết
Lê Trường Lân
Xem chi tiết
pham trung thanh
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết