Cho a,b,c \(\ge\)\(\frac{-3}{4}\)thỏa mãn a+b+c=1. Chứng minh rằng \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
a)Cho các số thực không âm a,b,c thỏa mãn điều kiện a+b+c=1
cm: \(a^3+b^3+c^3\le\frac{1}{8}+a^4+b^4+c^4\)
b)Cho a,b,c là các số thực thỏa mãn a+b+c=1. Chứng minh:
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
cho a,b,c>0 thỏa mãn a+b+c=3
chứng minh rằng \(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\le\frac{3}{4}\)
Cho a, b, c là các số thực dương thỏa mãn \(a,b,c\ge1\); \(a^2+b^2+c^2=4\)
Chứng minh rằng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{9}{2\left(\sqrt{a^2-1}+\sqrt{b^2-1}+\sqrt{c^2-1}\right)}\)
Cho a,b,c là các số thực dương thỏa mãn: \(\hept{\begin{cases}a,b,c\ge1\\a^2+b^2+c^2=4\end{cases}}\)
Chứng minh rằng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{9}{2\left(\sqrt{a^2-1}+\sqrt{b^2-1}+\sqrt{c^2-1}\right)}\)
Cho a, b, c là các số thực dương thỏa mãn điều kiện \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{8}{9}\)
Bài 1: Cho a,b,c là các số thực dương. Chứng minh:
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{a+c}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.\)\(\frac{1}{c}\).
Bài 2: Cho a,b,c là các số dương thỏa mãn: abc=1.
Chứng minh rằng P= \(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{3}{2}\).
AI GIẢI GIÚP EM VỚI... NHIỀU BÀI KHÓ THẾ NÀY EM SAO LÀM NỔI!!
Cho 3 số thực dương a,b,c thỏa mãn ab+bc+ca=1
Chứng minh rằng: \(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{3}{2}.\)
Cho a, b, c là 3 số dương thỏa mãn: ab+bc+ac=1. Chứng minh rằng:
\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{3}{2}\)