Cho a, b, c, d thuộc Z thỏa mãn \(a^3+b^3=2\left(c^3-8d^3\right).\)Chứng minh a + b+ c+ +d chia hết cho 3
cho a,b,c,d thuộc Z thỏa mãn :
a^3+b^3=2(c^3-8d^3)
Chứng minh a+b+c+d chia hết cho 3
cho a,b,c,d thuộc Z thỏa mãn a3 +b3=2(c3-8d3).Chứng minh a+b+c+d chia hết cho 3
Cho \(a,b,c,d\inℤ\)thỏa mãn:
\(a^3+b^3=2\left(c^3-8d^3\right)\)
CMR: \(a+b+c+d\)chia hết cho 3
Cho a,b,c,d thuộc Z thỏa mãn
a;a^3+b^3=6(c^3-11d^3)
Chứng minh a+b+c+d chia hết cho 6
b,a^2+b^2=c^2+d^2
Chứng minh a+b+c+d chia hết cho 2
giúp mình nha mai mình thi rồi
Cho a, b, c, d là 4 số khác 0 thỏa mãn: \(b^2=ac;c^2=bd\) và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Cho a,b,c,d\(\in\)Z thỏa mãn a3 + b3 =2(c3 - 8d3) . Chứng minh a+b+c \(⋮\)3
Cho bốn số a, b, c, d khác 0 thỏa mãn b^2= ac, c^2= bd và a^3+ 27b^3+ 8c^3 khác 0. Chứng minh rằng a/d= \(\frac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\)
a ) Cho b2 = ac , c2 = bd . Chứng minh :
\(\frac{a^3+b^3+c^3}{b^3+c^2-d^3}=\left(\frac{a+b+c}{b+c-d}\right)^3\) với b ,c , d \(\ne\) 0 , b + c \(\ne\) 0 , b3 + c3 \(\ne\) d3
b ) Cho x , y , z \(\in\) Z . Chứng minh : ||x+y|+z|+(x-y-z) chia hết cho 2