Ta có: \(a+b+c+d=a^2+b^2+c^2+d^2\)
\(\Rightarrow\orbr{\begin{cases}a=b=c=d=1\\a=b=c=d=0\end{cases}}\)
mà \(a^2+b^2+c^2+d^2=4\Rightarrow a=b=c=d=1\)
\(\Rightarrow ab+bc+cd+ad=1+1+1+1=4\)
Vậy.....
Ta có: \(a+b+c+d=a^2+b^2+c^2+d^2\)
\(\Rightarrow\orbr{\begin{cases}a=b=c=d=1\\a=b=c=d=0\end{cases}}\)
mà \(a^2+b^2+c^2+d^2=4\Rightarrow a=b=c=d=1\)
\(\Rightarrow ab+bc+cd+ad=1+1+1+1=4\)
Vậy.....
Cho tù giác ABCD có AB = a,BC = b,CD = c,DA = d. Chứng minh rằng :
1. S ABCD ≤ 1/4 (a + c)(b + d).
2. S ABCD ≤1/4 (a^2+ b^2+ c^2 + d^2 ).
Giúp mình với mọi người ! Cảm ơn mọi người !!!
4) Cho a :b=b :c=c: d=k
Cm:(a^2 + b^2 + c^2).(b^2 + c^2 + d^2) = (ab + bc +cd)^2
mình cần gấp ngày mai nộp rồi
1) cho tam giác vuông ABCD(góc A=góc D= 90 độ) AB=4cm,CD=9cm và DB vuông góc với BC
a) CM.tâm giác ABD đồng dạng vs tam giác BDC
b)tính BD,diện tích hình thang
2)cho tam giác ABC có AB=6,AC=9.lấy điểm D thuộc AC sao cho góc ABD = góc C
a) tam giác ABC đồng dạng vs tam giác nào
b)tính AD
Cho a-b+c+d=0 cmr:a^3-b^3+c^3+d^3=3(c-d)(ab-cd)
Giúp mình với mai mình phải nộp rồi.
Cho a,b,c,d>0, ab+bc+cd+da=3. CMR \(\frac{a}{b^2+c^2+d^2}+\frac{b}{c^2+d^2+a^2}+\frac{c}{d^2+a^2+b^2}+\frac{d}{a^2+b^2+c^2}>\frac{4}{a+b+c+d}\)
a(b^2+c^2+bc)+b(a^2+c^2+ac)+c(a^2+b^2+ab)
ai giúp mình với mình cần gấp bài này mai nộp rồi
cho tứ giác ABCD có AB=a; BC=b; CD=c; DA=d (a,b,c,d > 0 thỏa \(a^2+b^2+c^2+d^2=\left(a+c\right)\left(b+d\right)\)
a) tứ giác ABCD có gì đặc biệt?
b) nếu cho thêm giả thiết AC*BD=ab+cd khi đó tính các góc của ABCD
1.Chứng minh các đẳng thức sau
a)(a+b+c)^2+(b+c-a)^2+(c+a-b)^2= 4(a^2+b^2+c^2)
b)(a+b+c+d)^2+(a+b+c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2= 4(a^2+b^2+c^2+d^2)
c)(a^2-b^2-c^2-d^2)+2(ab-bc+cd+da)^2= (a^2+b^2+c^2+d^2)-2(ab-ad+bc+dc)^2
d)(a+b+c)^2+a^2+b^2+c^2= (a+b)^2+(b+c)^2=(c+a)^2
2. Chứng minh rằng
a) Nếu (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì a/b=c/d
b) Nếu (a+b+c)^2= 3(ab+bc+ca) thì a=b=c
Cho a :b=b :c=c: d=k Cm:(a^2 + b^2 + c^2).(b^2 + c^2 + d^2) = (ab + bc +cd)^2