Huỳnh Kim Nhật Thanh

Cho a,b,c,d>0 và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3\)

Chứng minh rằng: \(a.b.c.d\le\frac{1}{81}\)

Bài 1. 
A = 1/(a + 1) + 1/(b + 1) + 1/(c + 1) + 1/(d + 1) ≥ 3 
→ 1/(a + 1) ≥ 1 - 1/(b + 1) + 1 - 1/(c + 1) + 1 - 1/(d + 1) 
→ 1/(a + 1) ≥ b/(b + 1) + c/(c + 1) + d/(d + 1) 
áp dụng BĐT Cauchy cho 3 số dương: 
b/(b + 1) + c/(c + 1) + d/(d + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)] 
→ 1/(a + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)] tương tự 
1/(b + 1) ≥ 3 ³√(acd)/[(a + 1)(c + 1)(d + 1)] 
1/(c + 1) ≥ 3 ³√(abd)/[(a + 1)(b + 1)(d + 1)] 
1/(d + 1) ≥ 3 ³√(abc)/[(a + 1)(b + 1)(c + 1)] 
nhân theo vế → 1/[(a + 1)(b + 1)(c + 1)(d + 1)] ≥ 81abcd/[(a + 1)(b + 1)(c + 1)(d + 1)] 
→ 1 ≥ 81abcd → abcd ≤ 1/81 

TK NHA

HeroZombie
19 tháng 8 2017 lúc 13:54

Áp dụng BDT AM-GM ta có:

\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}+1-\frac{1}{d+1}\)

\(=\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\)

\(\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\)

Tương tự cho các BĐT còn lại cũng có:

\(\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\)

\(\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)

\(\frac{1}{d+1}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Nhân theo vế 4 BĐT trên ta có:

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}\right)^3}\)

\(\Rightarrow abcd\le\frac{1}{81}\)


Các câu hỏi tương tự
Nguyễn Quang Huy
Xem chi tiết
Nhâm Thị Ngọc Mai
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Trần Huyền
Xem chi tiết
TS Minh Quan
Xem chi tiết
Nguyễn Lâm Ngọc
Xem chi tiết
Lân Huỳnh Bảo
Xem chi tiết
Trần Huỳnh Thanh Long
Xem chi tiết
Hi nguyễn
Xem chi tiết