Bài 1: cho a,b,c,d thuộc z', >0 t/m : a+b=c+d=2015
Tìm max cua a/b +c/d
Bài 2: cho a,b,c,d thuộc z', >0 t/m : a+b=c+d=2016
Tìm min cua (a+b)/(a.c + b.c)
Cho a,b,c,d thuộc z', >0 t/m : a+b=c+d=2016
Tìm min của \(\frac{a+b}{a.c+b.c}\)
1. Cho các số a,b,c,d khác 0. Tính T = x2011 + y2011 + z2011 + t2011
Biết x,y,z,t thoả mãn:
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
2. Tìm số tự nhiên M nhỏ nhất có 4 chữ số thoả mãn điều kiện:
M = a+b = c+d = e+f
Biết a,b,c,d,e,f thuộc tập hợp N* và \(\frac{a}{b}=\frac{14}{22};\frac{c}{d}=\frac{11}{13};\frac{e}{f}=\frac{13}{17}\)
Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(a,b,c,d thuộc Z ; b khác 0 ; d khác 0). Chứng tỏ rằng: Nếu \(\frac{a}{b}\) < \(\frac{c}{d}\) thì \(\frac{a}{b}\) <\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
( Sử dụng: Cho 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\)[a,b,c,d thuộc Z ; b khác 0; d khác 0] ta có: \(\frac{a}{b}\) >\(\frac{c}{d}\)<=> ad>bc
1.Cho a+b+c+d ≠0 và \(\frac{a}{b+c+d}\)=\(\frac{b}{a+c+d}\)=\(\frac{c}{a+b+d}\)=\(\frac{d}{a+b+c}\)
Tính giá trị của A=\(\frac{a+b}{c+d} \)+\(\frac{b+c}{a+d}\)+\(\frac{c+d}{a+b}\)+\(\frac{d+a}{b+c}\)
2.Tìm x,y,z biết :
a)\(\dfrac{x^3}{8}\)=\(\dfrac{y^3}{64}\)=\(\dfrac{z^3}{216}\)và \(x^2\)+\(y^2\)+\(z^2\)=14
b)\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{6x}\)
1) cho P=\(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\)
tính P biết \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{y+x+t}=\frac{t}{x+y+z}\)
2) cho dãy tỉ số bằng : \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
tính M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{c+b}\)
a)Cho biểu thức: \(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Tìm giá trị biểu thức P biết rằng: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
b)Cho dãy tỉ số bằng nhau: \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
Tìm giá trị biểu thức: \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Câu 1: Cho a,b,c,x,y,z thỏa mãn điều kiện:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}.\)\(CMR:\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.\)
Câu 2: Cho a,b,c \(\ne\)0 khác nhau thỏa mãn điều kiện:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}.\)Tính giá trị của \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}.\)
Câu 3: Cho a,b,c,d thỏa mãn điều kiện:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}.\)
Tính:\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}.\)
Hơi dài 1 tí nhưng cố giúp mik nha!!! quan trọng nhất câu 1 các câu khác k cần cx đc !!!! giúp t câu 1 thui cx đc !!!Đúng mik tik cho !!!
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\).c/m \(\frac{a+b+c}{b+c+d}\)=\(\frac{a}{d}\)
TÌm x thuộc z để A=\(\frac{1-2n}{x+3}\)là số nguyên