cho a b c là các số thực dương thỏa mãn ab^2+bc^2 +ca^2=3 . Chứng minh rằng : (2a^5+3b^5)/ab +(2b^5+3c^5)/bc +(2c^5+3a^5)ca >= 15(a^3 +b^3 +c^3-2)
Cho các số thực dương a,b,c thỏa mãn ab+bc+ca=5 . Tìm giá trị nhỏ nhất của
P=\(\frac{3a+3b+2c}{\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}}\)
tìm các số nguyên a,b,c thỏa mãn hệ pt \(\int^{2a+3b=5}_{3a-4c=6}\)
bài này thu gọn là tìm nghiệm nguyên của pt 9b+8c=3 ( ai giúp với)
Cho các số dương a,b,c thỏa mãn:\(ab^2+bc^2+ca^2=3\)
CMR \(\frac{2a^5+3b^5}{ab}\)+\(\frac{2b^5+3c^5}{bc}\)+\(\frac{2c^5+3a^5}{ca}\)
Cho các số dương \(a,b,c\) thỏa mãn \(ab^2+bc^2+ca^2=3.\)
Chứng minh rằng:
\(\frac{2a^5+3b^5}{ab}+\frac{2b^5+3c^5}{bc}+\frac{2c^5+3a^5}{ca}\ge15\left(a^3+b^3+c^3-2\right)\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
với các số a,b,c là các số thực thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3
CMR (a+2b) (b+2c) (c+2a) = 1
CMR: Với mọi a;b;c>0
\(\frac{2b+3c}{a+2b+3c}+\frac{2c+3a}{b+2c+3a}+\frac{2a+3b}{c+2a+3b}\ge\frac{5}{2}\)
với các số a,b,c là các số thực thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3
CMR (a+2b) (b+2c) (c+2a) = 1