cho a,b,c,d là các số nguyên dương thỏa mãn :\(a^2+c^2=b^2+d^2\)CMR:a+b+c+d là hợp số
a,b,c,d là các số nguyên dương thỏa mãn \(\frac{a^3+b^3}{c^3+d^3}=\frac{1}{5}\)
cmr:a+b+c+d là hợp số
a,b,c,d là các số nguyên dương thỏa mãn \(\frac{a^3+b^3}{c^3+d^3}=\frac{1}{5}\)
cmr:a+b+c+d là hợp số
9> Cho a,b,c,d là các số nguyên dương thỏa \(a^2+b^2=c^2+d^2\)
CMR: a+b+c+d là hợp số
Bài 1:Cho a,b,c là các số thực dương thỏa mãn $a^3+b^3+c^3−3abc=1$ .Tìm minP=$a^2+b^2+c^2$
Bài 2: Cho a,b,c,d thỏa mãn a>b>c>d và ac+bd=(b+d+a−c)(b+d−a+c) . Chứng minh ab+cd là hợp số
Bài 3:
1. Tìm hai số nguyên dương a và b thỏa mãn $a^2+b^2=[a,b]+7(a,b)$(với [a,b]=BCNN(a,b);(a,b)=UCLN(a,b))
2. Cho ΔABC thay đổi có AB=6,AC=2BC.Tìm giá trị lớn nhất của diện tích ΔABC.
Bài 4: Cho a,b,c là các số nguyên tố thỏa mãn: $20abc<30(a+b+c)<21abc$. Tìm a,b,c.
Cho 6 số nguyên dương a,b,c,d,e,f thỏa mãn: a2+b2+c2 = d2+e2+f2
CMR: K = a+b+c+d+e+f là hợp số
cho a,b,c,d là các số nguyên thỏa mãn :a^5+b^5=4(c^5+d^5)
CMR:a+b+c+d chia hết cho 5
cho các số nguyên dương a,b,c,d,e,f thoả mãn abc=def. chứng minh rằng a(b^2+c^2) + d(e^2+f^2) là hợp số
Cho a,b,c,d là các số nguyên dương đôi một khác nhau, thỏa mãn : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\). Chứng minh tích abcd là một số chính phương.