Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Manaka Mukaido

Cho a,b,c,d là 4 số khác 0; biết \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng \(\frac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}\)

Trung Kien Du Tran
11 tháng 10 2017 lúc 19:42

vì \(\frac{a}{b}\)=\(\frac{c}{d}\)=>\(\frac{a^{2017}}{b^{2017}}\) =\(\frac{c^{2017}}{d^{2017}}\) 

áp dụng tính chất dãy tỉ số bằng nhau

=> \(\frac{a^{2017}}{b^{2017}}\) =\(\frac{c^{2017}}{d^{2017}}\)\(\frac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}\)=\(\frac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}\)=\(\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}\)(diều phải chứng minh

dekisugi
11 tháng 10 2017 lúc 19:47

Từ \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra a=bk

           c=dk

Ta có

\(\frac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\frac{\left(bk\right)^{2017}+b^{2017}}{\left(dk\right)^{2017}+d^{2017}}=\frac{b^{2017}.k^{2017}+b^{2017}}{d^{2017}.k^{2017}+d^{2017}}=\frac{b^{^{2017}}\left(k^{2017}+\right)}{d^{2017}\left(k^{2017}+1\right)}=\frac{b^{2017}}{d^{2017}}\)(1)

Ta có

\(\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}=\frac{\left(bk-b\right)^{2017}}{\left(dk-d\right)^{2017}}=\frac{\left(b\left(k-1\right)\right)^{2017}}{\left(d\left(k-1\right)\right)^{2017}}=^{\frac{b^{2017}}{d^{2017}}}\)(2)

Từ (1) và (2)

Ta suy ra

\(\frac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}\)

Nguyễn Thị Thanh Thảo
11 tháng 10 2017 lúc 19:50

từ gt: \(\frac{a}{b}\)=\(\frac{c}{d}\)suy ra ad=bc

\(\frac{a^{2017}+b^{2017}=\left(a-b\right)^{2017}}{^{c^{2017}}+d^{2017}=\left(c-d\right)^{2017}}\)

suy ra \(a^{2017}+b^{2017}.\left(c-d\right)^{2017}=c^{2017}+d^{2017}.\left(a-b\right)^{2017}\)

\(a^{2017}+b^{2017}.c^{2017}-b^{2017}.d^{2017}=c^{2017}+d^{2017}.a^{2017}-d^{2017}.b^{2017}\)

theo mình nghĩ là\(b^{2017}.c^{2017}=d^{2017}.a^{2017}\)

bc=da

Manaka Mukaido
12 tháng 10 2017 lúc 18:50

Xin lỗi nha! Vì 3 bn giải đúng nên mk sẽ dùng 3 nick để k cho 3 bn. Thanks các bn!!!


Các câu hỏi tương tự
Đỗ Văn Đạt
Xem chi tiết
manisana
Xem chi tiết
Minh Youtuber
Xem chi tiết
Tạ Tiểu Mi
Xem chi tiết
Nguyễn Trung Dũng
Xem chi tiết
ehgihgrkjge
Xem chi tiết
Ngọc Nguyễn
Xem chi tiết
ngọc linh
Xem chi tiết
Quân Thiên Vũ
Xem chi tiết