Đặt a/b =c/d =k => a=kb , c=kd
thay vào ta có : 2kb + 3b/2kb-3b và 2kd + 3d / 2kd - 3d
= b.(2k + 3)/ b.(2k -3) = d.( 2k+ 3) / d.( 2k -3)
= 2k+3/2k-3 = 2k + 3 / 2k -3
Vì 2k+3/ 2k-3 = 2k+3 / 2k - 3 => dpcm
Đặt a/b =c/d =k => a=kb , c=kd
thay vào ta có : 2kb + 3b/2kb-3b và 2kd + 3d / 2kd - 3d
= b.(2k + 3)/ b.(2k -3) = d.( 2k+ 3) / d.( 2k -3)
= 2k+3/2k-3 = 2k + 3 / 2k -3
Vì 2k+3/ 2k-3 = 2k+3 / 2k - 3 => dpcm
Cho a/b=c/d CMR 2a-3b/2a+3b=2c-3d/2c+3d
Cho a/b=c/d. Chứng minh 2a+3b/2a-3b=2c+3d/2c-3d
Cho a/b=c/d. Chứng minh rằng : 2a+3b/2a-3b = 2c+3d/2c-3d
. Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng \(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
Cho (2a+3b) / (2a - 3b) = (2c+3d) / (2c - 3d)
Chứng minh rằng: a/b = c/d
a/b = c/d chứng minh rằng 2a+3b / 2a-3b=2c+3d/2c-3d
Cho TLT: 2a+3b/2a-3b=2c+3d/2c-3d
CMR:a/b=c/d
Cho a/b=c/d, chứng minh rằng: 2a+3b/2c+3d=2c+3d/2c-3d
Cho a/b = c/d (a, b, c, d > 0)
CMR a/ 2a - 3b/ 2a + 3b = 2c - 3d/ 2c + 3d
b/ ab/cd = (a - b) 2/(c - d)2