Cô si lên:
\(S\ge8\sqrt[8]{\frac{abcd\left(b+c+d\right)\left(a+c+d\right)\left(a+b+d\right)\left(a+b+c\right)}{abcd\left(b+c+d\right)\left(a+c+d\right)\left(a+b+d\right)\left(a+b+c\right)}}=8\)
๖²⁴ʱČøøℓ ɮøү 2к⁷༉ Liệu điểm rơi có xảy ra ???
Dùng \(\Sigma_{cyc}\) với \(\Pi_{cyc}\) cho nó lẹ nha,chớ mik nhác lắm:((
\(S=\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{a}\right)\)
\(=\Sigma_{cyc}\left(\frac{a}{b+c+d}+\frac{b+c+d}{9a}\right)+\Sigma_{cyc}\frac{8}{9}\cdot\frac{b+c+d}{a}\)
\(\ge8\sqrt[8]{\Pi_{cyc}\frac{a}{b+c+d}\cdot\Pi_{cyc}\frac{b+c+d}{9a}}+\frac{8}{9}\left(\frac{b}{a}+\frac{c}{a}+\frac{d}{a}+\frac{a}{b}+\frac{c}{b}+\frac{d}{b}+\frac{a}{c}+\frac{b}{c}+\frac{d}{c}+\frac{a}{d}+\frac{b}{d}+\frac{c}{d}\right)\)
\(\ge\frac{8}{3}+\frac{8}{9}\cdot12\left(use:\frac{x}{y}+\frac{y}{x}\ge2\right)\)
\(=\frac{40}{3}\)
Dấu "=" xảy ra tại a=b=c=d.
P/S:Viết tắt rồi mà vẫn dài:( Thử hỏi xem nếu ko viết thì sao ??