Từ \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=>\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right)\)
a/b = c/d
suy ra cb = ad
suy ra cb+ac =ad+ac
suy ra c(a+b)=a(c+d)
nên a/a+b=c/c+d
Có \(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
=> \(\frac{a}{c}=\frac{a+b}{c+d}\)
=> \(\frac{a}{a+b}=\frac{c}{c+d}\) (Đpcm)