\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)abc=\frac{3}{4}8\Rightarrow\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=\frac{3.8}{4}\Leftrightarrow\)\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=6\)
\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)abc=\frac{3}{4}8\Rightarrow\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=\frac{3.8}{4}\Leftrightarrow\)\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=6\)
Cho a,b,c >>0 ; abc =8
Và \(\frac{1}{b^2}\)+ \(\frac{1}{c^2}\)+ \(\frac{1}{a^2}\)= \(\frac{3}{4}\)
Tính giá trị của A = bc/a + ac/b + ab/c = ?
Cho abc=8 và \(\frac{1}{a^2}\)+\(\frac{1}{b^2}\)+\(\frac{1}{c^2}\)=\(\frac{3}{4}\)(a,b,c>0)
tính giá trị \(\frac{bc}{a}\)+\(\frac{ac}{b}\)+\(\frac{ab}{c}\)
Cho a,b,c là 3 số đôi một khác nhau và khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính giá trị của biểu thức M=\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính giá trị của biểu thức \(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}\)
cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) và a,b,c khác 0. tính giá trị biểu thức \(N=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Cho 3 số dương a,b,c thỏa mãn a+b+c = 1/2 và a^2+b^2+c^2+ab+bc+ca =1/6. tính giá trị BT : P = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Cho a,b,c thỏa mãn \(\frac{a^3}{a^{^2}+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}=1006\).Tính giá trị của biểu thức \(M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Cho \(S=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\). CMR \(4S+1\)là số chính phương
Cho a,b,c \(\ne\) 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) .
Tính giá trị biểu thức:
\(M=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
Cho a,b,c khác 0\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\), Tính giá trị biểu thức A= \(\frac{a^2+bc}{a^2+2bc}+\frac{b^2+ca}{b^2+2ca}+\frac{c^2+ab}{c^2+2ab}\)
Cho a3+b3+c3 = 3abc và a +b +c khác 0
a) Tính giá trị biểu thức \(\frac{a^2+b^2+c^2}{_{\left(a+b+c\right)^2}}\)
b)Chứng minh : P=\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)